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Theory of the Dipole Antenna

and the Two-Wire Transmission Line

I•by t:

Tai Tsn 'Wu

Gordon McKay Laboratory, Harvard University'

• Cambridge, Massachusetts

Abstract

The properties of the dipole antenna are studied by an approximate

"" procedure that makes use of the Wiener-Hopf integral equation. In particular, Iular,

the input admittance and the radiation pattern a'•e found. Simple formulas are s are

obtained only when the dipole antenna is more than one wavelength long. The The

present results thus supplement the existing theories, which are concerned d

emostlywith shorter dipoles.

The same procedure is then applied to several related problems. First, *rst,

j the back-scattering cross section of a dipole antenna is found approximately ly

for normal incidence. Secondly, the two-wire transmission line is studied in d in

detail by considering it to be two coupLed dipole antennas. The capacitive end- end-

I correction for an open end is evaluated, and the radiated power and the radia- dia-

Se.tion resistance are found for a resonant section of transmission line with

both ends open. Finally, the dielectric-coated antenna is -onsidered briefly. fly.

*Supported in part by NSF Grant 9721-7750 and Contract Nonr-1866(32).
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Introduction

The problem of the center-driven cylindrical antenu. has been investi-

gated by numerous authors. There exist now principally three kinds of attacks;

iterative procedures, variational methods, and Fourier series expansions.

Recently, Duncan and Hinchey iused the last method to get some extremely

F., interesting results. To employ this method, it is essential to carry out the

calculations on a high-speed digital computer. The other two kinds of methods

are described in detail in the monumental book of King , which will be

designated by K in subsequent references. For convenience, num,'rous

references will be made to this book instead of the original papers.

For thin dipole antennas of length not much more than one wavelength,

ular, the King-Middleton iterative procedure [ K, p. 101 Ii] yields current distribu-

sare tions in good agreement with the experimental results. So far as the input

SThe impedance is concerned, the various iterative and variational methods seem

d to give comparable results for thin antennas not much more than two wave-

lengths in total length [K, p. 843]. If h is the half-length of the thin antenna,

it is reasonable to think that cases where h X-X are fairly well understood.
first,

-ly The situation is much less favorable for h > k. Both theoretical and

d in experimental results are very scarce in this vast range of antenna lengths.

end- So far as the author is aware, the following three pieces of information are

dia available:

1. First-order King-Middleton distributions of currents for antennas

fly. with h = 6X [K, p. 115],

Z. Robert's measurement of current distribution for an antenna

with h -I1I X [K, p.140], and
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3. Altshuler's 3- recent measurements of current distributions one

'I R for antennas with h -2 X. I

No general conclusions can be drawn from these results, except that there is J there

essentially no evidence of any agreement between theory and experiment ment.

A more direct comparison is possible in the related problem of the determina- deterr

tion of the back-scattering cross sections of a dipole receiving antenna at at

normal incidence [K, p. 508, p. 516]. Here the theoretical and experimental crime

results are certainly in disagreement tor h ;. 0. 8 X.

If these few pieces of experimental data are not dismissed as incorrectly incorz

recorded, then one is forced to consider the possibility that the existing ting

theories of the dipole antenna may be inapplicable when h Z X. An iterative iteral

procedure is one which gives correction terms to an initial, rough approxima- pproxi

tion of the current distribution. Since usually only a Emall number of itera- of itei

tions can be carried out, the accuracy of the results depends critically on Ily on

the accuracy of the initial approximation. Since the iterative procedure edure

itself can hardly be questioned, an explanation of the discrepancy between tween

theory and experiment may be sought in the inadequacy of the initial

appr•odmation.

This paper is devoted to the following question: Starting from the in- 'he i_

tegral-equation formulation of the antenna problem, how can one get a rough

Sapproximition to the various characteristics of the antenna? This is

properly the first step of an iterative procedure. However, unless this this

approximation is of an unrealistically simple form, no iteration can be con- be coi

veniently carried out. Therefore, in determining this rough approximation, imatic

it should be kept in mind that the result must be at least semi-quantitatively tativ
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correct before it is of any interest or of any use. A possible answer to this,ons

question is given in Part I for the center-driven dipole antenna. in Part II,
! i the same procedure is applied to a few somewhat more complicated cases.

i The interest is mostly centered around the situation when the dipole antenna

mont.
is several wavelengths long.

determina-
Throughout this paper, -rnly symmetrical, center-driven antennas are

-na at I treated. The generalization to asymmetrical cases seems to offer no diffi-
__erimentzl Iculty in principle.

incorrectly

ting

iterative

pproxima-

of itera-

Ily on

edure

tween

Ii
*he in- K.

4. I *

this I 1'
be con-

mation,

*|
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Part I. The Center-Driven Dipole Antenna

1. Formulation of the Problem

The dipole antenna is assumed to be a sTymmetric tubular antenna of f

zero thickness and infinite conductivity defined by E = a, I . I . h, as shown own

in Fig. 1. If I(z) is the total z-component of the civrent at z, including ing

both the current on the outside of the tube and that on the inside, then

iIih) = 0,

and the z-component of the vector potential on the cylinder r = a is given by van

IO h
A(z) 4 dz' (z') K ( z- s') - I

where 1L is the free-space magnetic permeability and the kernel K is

given by

K(z) (Z-i)" d 9 [z 2 +(?a sin 0/2)Z] exp k [zZ +(Za sin 0/2)2]-•2

(1.3) .

Here k is the wave number. As usual in antenna theory, the term "vector tor

potential" is us'td to denote the vector potential in the Lorentz gauge satiafying titf)

r the Sommerfeld radiation condition. On the other hand, if the strength of the i of t

6-function generator is taken to be - 1, the z-component of the vector potential oter

J ! is of the form

A (z) T" [C cos kz + sin k z.] (1.,4)

0

for Iz I < h. Here o is the characteristic impedance of free space. The The
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combination of J4.2):.and (1L ).. givea the, integral equation for I(z),

where C is to be determined by the boundary condition (1. 1).

Tn the King-Middieton iterative solution, the vector potential is assumed
'- be proportional to the current at the same point in order to get the initial

ing1 rough approximation. This assumption is reasonable except near the ends of

the dipole antenna, where the current changes rapidly with a. Unfortunate'ly,

1 t't, value of the constant' C is determined at z = h, precisely whete this

Lven by approximation is poor. It is here proposed to find C by a different proceiure,

1 .'iaking use of the observation that A(z) is relatively small for !ZI >h

[K, p.429, p. 527]. This observation is useful because then the antenna m~y be C

(..2) approximated by a semi-infinite one driven by a vector potential distributi?n

which is af t-.o form (1.•) for I z < h and is zero ior z > h. Cons -

quently, the problem of the semi-infinite antenna is to be studied first.

I 1 2. The Semi-Infinite Antenna

0/2) ""The semi-infinite antenna is described by an integral equation of the

- Wiener-Hopf type:

tor dz'I(zl)K(z-z') = F (z), (2-..)

Lti afying 0

of the where F(z) is known for z >0. It is assumed that F(0+) and F' (0+) both

otential I exist, and F(z) approaches zc:o sufficiently rapidly as z Oco. Under these

I circumstanceu, I(z) is in general unbounded near z = 0. If, however, F(z)

(1,4) satisfies a certain integral condition, I(z) becomes ounded near z = 0, and

furthermore lim I(z) = 0. JIt is desired to find this integral condition.

The -"
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For this purpose, the usual Wiener-Hopf procedure may be used.

I Consider k to have a small positive imaginary part which is eventually

allowed to approach zero:

ki k = c>O0 (2.2)

and define the relevant Fourier transforms by

T(M, = dzl(z) exp(-irz) .o(2.3)

d(a) •daKz) exp (-iCz) v iJ 0 [a(k 2 . 02 }'] Hol)[a(k2
- 2)Z] ,

D 
(2. 3b)

"(C) = S dzF(z)exp(-i Cz)
Q (2. 3c)

and

P4-( C) d dzr(z) exp (-i Cz)
-GO (2. 3d)

Then (2•. 1) leAds to

"Tr)1(•)"( = "•(•;) + F+.(r) .(2.4) J
For any function f of C analytic in the strip I Em = C < e, define I

co + if./2
[f()] = - (2i)- dC' (C -)L f(r') (2.5a)

-OD +if/2J • and

) (2i) - d / f

Z'4k

* o-iI z b
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:'ially i where the Cauchy principal values are t.aken at co. Then [i (r)] is

analytic for Im C < c/2, and + is analytic for Is n > -a/2.

(2.2)j Furthermore, in the strip Lin < ,/2,

Sf(0) M [f(0)]- +[f(C)]+ " (2.6)

(23)In termsoof the function R (Q), define

j (C) = exp [: FnR (i)-n+ *'27)

+

then

(2.3b) K(r) =

I - +(.8

( 3 for I im < e /2, and furthermore,

+ (2.9)

(2. 3d) From (Z.4)".and -(2. 8) it ollows -that

(This defines an entire function, which must be zero because of the behavior at
(2, ) I infinity. Therefore,

(2. 5a)

It is assumed that I(z) has no singularity at z = 0. Thus, as C o - c in

j the half plane [iJm K I < -E2,

(2. 5b) I

Ii

m mo
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az• fur therr.more
Z1•1)= 0 ( ] - ) .12.13) (2t~.13)

Ittherefore, follows from (2. 1). that

MF R_) L(C)I- 6( It IIi(2. 14) (2.14•)

as I c I "o . This is the required condition on F(z).

In order to put" (2.:14) in a simpler form, let e-'0 + and note that at

R (C) is analytic in the cut plane as shown in Fig. 2. Furthermore, the con- on-

tours used in defining [f(z)] + both become C , also shown in Fig. 2, and nd

t+y and M are analytic in the entire complex plane except respec- (1

tively the left and the right branch cuts of K (C). Define

-+ i+k), (2.15) (2.15)

then I) ( is integrable along Co, at least in the sense of Euler ;r

Ssummability. Therefore, the left-hand .side of 12,'14) is explicitly

.r[j~~~(] =F(O+) [ 1 !+k'L(C)] +[F0 (O r'ff~

=- 12iri)"1 S dC•'(' _(r C)- • (C ) .K

C0 (2. 16) (2. 16)

The condition (2. 14) is thus explicitly

dr F(C)L +(C) 0. (12.17)

0

aoI
I tN

|U
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.10-3. Approximations for Thin Antennas

, 
I

Tecniin(.1)frtevanishing of the current at the end of the I
semi-infinite antenna is exact. This rather complicated condition can be

greatly simplified if it is assumed (1) that the antenna is thin in the sense
that b/X << 1 and (2)l:#at the characteristic distance for the variation of

49z .i much, larger than.a . Under the second assumption, which is V
satisfied if the right-hand aide of .(I. .4) is tiken to be F&(h-z), the

behav;or of L+( C) for a- is unimportaz:t, and thus it is permissible to •,

use the following approximation of 'R(C):

alC) = f- n[(kk- C•)/k 2 ] (3.1)

where 
iU

1) 2 f20 + i.rz.

and 1

and= In (Zlka) - y . (3.3)

In (.u y is Eulero a constant, numerically about 0. 57722. In view of a Ii
previous discussion t on the. meaning of the input admittance of a linear

antenna driven by a delta function, the approximation (3. 1) does not introduce

any further error beyond those inherent in the model of the delta-functiongenerator. Once (3,J.) is ubed, it is possible to define II
I I,

(!) =[K()] , 1 (3.4)
7) 

.a

M(C) $ dz M(z) exp(-i z) , (3.5%

Sand

' I'

= exp (-1 z)+( (3.6)

I; II
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It should be emphasized that M (z) and L+ (z) are meaningful only when

I an approximation of the type (3. 1) is used. The exact i( ) and , +(

are not the Fourier transforms of integrable functions.

First, an approximation is to be found for M(z), which is given by

1 ikz OD kzo.Mlz) = ik(Z-f}"I e d ge- 0 - In [f(2+if)] - -

a In [(Z + ig)] +3 i
o (3.1) 3.1)

Sfor z > 0. When z is not too small, it will be a reasonably good approximation ation

to replace In (2 + f) in the integrand by In 2, and replace In 9 by the average erage

~ O d -k z , Z e -k z g L. 8g[ dd9n -kz 1 • -n (kz) - y. (3.8) 3.8)

0 0

With these replacements, (3. 7) becomea

-I ik i+ -l 31,r.
M(z) = i12irz) ekz[(21 o -Lnj•- +'a n- I -(2 °-In _+Y -•'-- ") .

(3.9) 3.9)

Therefore • I M (z) ldz exists. The same staten~ent is true of L
ii

If the integral equation had been writtezn in terms of the electric field instead .d

If~~~ ~ ~ ~ ah nerleutonhdbe rte n d Lem ofutelctrion would inotehave d
of the vector potential, the corresponding M and _L+ functions would not have ave

this property, i. e., t'hey would not approach zero sufficiently rapidly. The

rapid decrease of M' and L implies that the behavior of A for z >h is

relatively unimportant in the present calculation. As will be seen in Sec. 8,

I
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the condition that M and L should decrease sufficiently rapidly dictates

the choice of the differential operator that gives S from A.

4. Application to the Dipole Antenna

To apply the results of the last two sections to the dipole antenna, it is

convenient to define for Z >0.

S(Z dr co~ dz exp (-i Cz) sin kz H(Z -z),

0 0 (4.1)

nation T(Z) = dC FC) dz exp (-irz) [cos kz H (Z-z) - exp (-ikz)]

erage CO 0 (4.2)

3.8) 1 =S'(Z) dr+C dz exp (-lz) sin kz H(Z -z),

I and

3i•,)'• .*T'(Z, =3 d• t+(r) 3 dzexp{-irz) [coskzH(Z-z, - exp(-ikz)],

3.9) Y (4.4)

where H is the Heaviside function

• [10 x>0

d H (x) =

v By comparing (1.2). anid (.1.4) with (2. 1), it, is seen Atator the

j dipole antenna and for z > 0
11 l (. -z

F(z)= 4iCl [C cosk(,h-2) + -sink Ih- . H(Zh-z)
0 2I (4.5)
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which may be alternatively expressed as

F(z) =4irir-1 [ sin kh cos kz H h - z) - cbs kh sin-kz H (h z)1~z = s4ink)~s+Xokolnh (hI1

+(C coskho - sinkh) coskzH (2h-z) +(Csinkh+ coskh) sinkhHl(h- z)]. 2h- z)

(4.6) (4.
When this is substituted into (Z.17),, the result is, using (4,3F),

Ssin kh'T'(h) - coo kh S'(h) + (C cos kh - sin kh) T'(2h)

+(C sinkh + ½ cos kh) S' (2h) = 0. (4.7) (4.

The constant C is thus explicitly given by

C= [coo kh T'(2h) + sin kh S(h)] [T(h) - T(2h)]n. C = " • i kh [ T'(h) - T(( h)] }

- cos kh [ 2 S'(h) - S(2h) (4.8) (4.

On the other hand, it follows froxn (4. 5). that .the input admittance of the the

antenna is
SY = Zi. •[S(h)+CUh)(494.

SPA

where U(Z) = dr1 1 dz exp (-irz) cos kz

1C 0z (4.10) (4.

In order -to put -(4. $). and (4, LO) in forms that aae easily computed, puited,

many approximations have to be made. In 14.,.1,=6) . the contour C0 can can
be deformed so that it is wrapped around the left branch'cut. When kZ is not is no
too small, the contributions to the four functions, insofar as the C-integral is al is

U
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concerned, come mainly from the region J • + k J Z <' I1. On the other hand,

from (Z.8) t+ (•) is the same as 11(r) r (C), wheret (- ) is

analytic in the vicinity of C= -k. Therefora, approximately

2h-z)]. S'(Z) = _ ('k) S (Z) (4. 11)

(4.6) a
and

T'(Z) = 1(-k) T(Z) (4.14) 1z)

'7 Since dipole antennas with kh < 1! are well understood in terms of the King-

Middleton theory, the task here.i z.hus to calculate S(Z), T (Z) and U (Z) for

kZ large. This is carried out in Appendix A, with the results

s(z)= n[1+ iri n11 -In -] 2 -[( - In Z"-(o - 2In Z + Ii)-

th 121(4.8) +In {[0(Z)]-i0 3 (z } + • ' {-~Z r ~[0.3 (Z)]

the (ZkZ)- exp(ZikZ) t[U :Z)]- -(4.13)13S-[%(z] 
, (4.13)13

1.9) -2i T(Z) I-n [1 t+iri( -( nZ)I] - W2 [(CA - 24n Z)-z- z In 2 +Iri)-ý'

0 - _

-In {0 2 (z)]a ( Z'} - Y1 [a0 (Z)I - - [11 (z)f2

(4.10) i (2k Z) exp (2 ikZ) U Z(Z) [a03 (z)] 1(4.14) 14)

puted, and

can i U(Z) =In {z(Z)]1 Q3 (Z + - {[I-2 (Z) [ (z)]ZJ

is not

al is +i (ZkZ) 1 exp (2 ikZ) {2[ z((Z) [ Z)- . (4.15) 15)

aii
z 3

I
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In (4,.13 15)-, the following symbols have been used:

12 (Z) = 2( 0 - In 2) +An (2 kZ)+.'V-.i w/2 (4.16)

a0(Z). 2 (a. Ln 2) +In (ZkZ) + Y+ 3 iir/Z (.7

11 and

IZ) r (1 {) - •(4.18)

IV' is numerically about 1.6449.I 5. The Radiation Field

The procedure. of Sec. 4 may be used to get the current distribution not on

close to either the generator or the ends. However, this point is not studied di

further because excessive numerical computation seems to be necessary. y.

Let a spherical coordinate system (r, 0, 6) be set up such that the ends e

13) of the antenna are at (h, 0, 6) and (h, ft, 6). All field quantities are independ- de

ent of 6 because of rotational symmetry. Define the field pattern by

F(Q) = - lim E 0 (r, O) r exp (- ikr) .

By (1,2) 'this is

I Ih
14) F(1)-iwo 1ý (4w)" sin 0 dzl)zZ2rw)-

1~ -h

dO' exp [-ik (z coso 0 -a coso Psin 0)]
I -it (5.2)

15)
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When the smail term proportional to a is neglected, this simplifies to

F.(6) = iWQ 0 (4s)-I T (k cos W') sin 0 (53)(4.16) •{ .•

Within the framework of the present approximation, this is simply
(4.17)

I iJ h I-co ) sin [kh I + coo 0)]
F(0) = - [Q I-Insin n 1 ]- AInC k - cos O) +c

(4.18) )
(4 1)1 1- cos [kh (I- cos 0)] + I - co os fkh (I+ co og) 0 l

n 1(5.4)

This differs from the usual zeroth-order field pattern only in the appearance

ion not of th-atr( I
Ithe factor -An sin 0]-I when C is chosen in a sufficiently simple
,udied way. For a long dipole, this factor has the effect of reducing the end-firing

ry. major lobes.

he ends

Ldepend-

(5.1)

(5.2)

Sj
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SPart 11. Generalizations
6. .3ack-Scattering Cross.Section

In this and the two following sections, the procedure of Part I is to be

applied to three situations matharnatically similar to the one already treated.I The first problem is the determination of the back-scattering cross section of

an unloaded dipole antenna at normal incidence. The geometry is shown in a ,

Fig. 3. Without loss of generality, the incident electric field ir taken to be

I at x = 0. Sinc3, the radius a of the dipole antenna is assumed to be very

small compared with the waveleg&., the scattered field is considered to be

rotationally symmetrical. Under this approximation, the current induced on

the antenna satisfies the integral equation:

h

dhz' I [I +,C cos kz] (6.1)

Here the subscript s is used to distinguish the pre3ent scattering problem,.

and the const~nt C5 is to be determined from the boundary condition.

1 8s(h) = 0 . (6. Z)

In terms of I the back-scattering cross section is

h

B= (40)- 2Wo2 I ( dzIl(z)(2  (6.3).1 -h
Within the framework of the approximations used in Part I, this is given by

a "B 41r 1 1i 2 Ih +Csk-1 sinkhl (6.4)

VOL*
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Withojut the C 5 term, this is just the .noaresnuant. formula of Chu

As in the case of the driven antenna, the value of C5 is to bel :'be determined from iZ..l•., .with..the. following. form for F,

td. F (z) = 4 vi•( •"LW) I+Ccosk(h-z)]H (2h- z) . (6.5)

nof
n j i It is' thus useful to define

1'VOZ) dr a~ d dz exp (-i z)[H (Z - z)- exp (-i kz)] (6. 6)

e C 0 0

Thus C* is given by

C= - V(Zh)/[cos kh T'(2h) + sin kh S'(211?], (6.7)

or approximately with (4..J 1.- iZ) -

6.Cs V1 " h M '+ k) / [coo kh T (2h) + sin kh SCh(] (6.8)

From. (6. " ,V'. is. found to be

-10

i z% -In •;z-11]" - [~o-nnl~z l) z(6--i)

6.3) For kZ large, this is approximatelye

Vl(Z) = E (rtE (0) E+l(k) + e 1[02lZ)] 3(Z)] (6.10)

6.4)
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To avoid numerical integration, it is convenient to use

-- ~ ~'L + (O) L, +(k ) - (2121)II "( . 1

The explicit formula for the back-scattering cross section is given by (6.4)

with -*(6.A) -and .(6. 1b. -11).I 7. The Two-Wire Line

I, In principle, the method of Part isi.applicable to the case of a system

of two identical, nonstaggered, parallel dipole antennas as shown in Fig. 4

provided thar it is admissible to assume that the current distribution is

S~rotat~onally symmetrical on each dipole. This assumption is reasonable if
the antennas are thin and if the separation b between the antennas is not too

small. If the symmetrical and antisymmetrical parts of the curents are used

to set up integral equations, then the present case differs from the came of a

single dipole only in the appearance of a more complicated kerneml. For

example, the kernel for the antisymmetrical part of the current is

2 2 -1/22 21/
Ka(z) = K(z) - (Z +b ) exp [ik(z +b ) b

*(7.1)

with the Fourier transform

2 21/2SOi)[b(k- •) I (7.2)
a 0

The kernel K for the symmetric part of the current differs only in a sign.

Besides a this problem is characterized by three lengths: X, h, aw.- b.

In the general case, it seems difficult to get easily computabie formulas from

these kernels. When kb << I, the HF(1) in the Fourier transforms of the

MM•

* m
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kernels may be replaced by a log.rkthm, analogouis to. *(.3:1.. In particular r

Rs M•) = 2i'al.-In [ (k 2-2) k 2]} (7.3) 3)

where

GId = In [«Z (k ab) - ,(7.4) 4)

A werm-known result follows immediately efrom e7l34):, namelypprxti the..
equivalent radius of this antenna system is (ab) 1/2. 1K, p. 275].' In more

general cases, the present point of view reproduces all the resunts of

Harrison and King 5-. on- effective radii,

In the remainder of this section, vhe following special situation of the.

antisymmetrical case is to be considered

dkb 2/X << 1 (7.5) 5)

Furthermore, attention is to be restricted entirely to the approximate

determination of the total power radiated and the capacitive and correction,

both topics outside of tue realm of conventional transmission line theory.

An important difference between the present case and that of a single dipole

'1antenna is that T a(•) is bounded in the vicinity of r = -k while R(C) is not. t.

Consequently,

"+ (-,k) = 0 but L+a (-k) / 0 (7.6) 6)

Note that ',+ a ( ) etc. are defined analogous to 1+ (C) etc. except that

Ia(•) is used instead of R(M). Because o! (7.(),(4,4). cannct. be

b. generalized to the present case without modification I. nstead, define

W+' (Z)= dC! dzep( z+i )+ dz exp(*z-i k z)].
CO 0 -OD

(7.7) 7)

•t

It i
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If for largb '-Z only terms of the orders Z0 and Z-1 are kept, W' may be iy be

evaluated approximately to be

W~ + Z) = r' +,L(k) ,(7.8) (7.8)

andI

W (Z) =2r !+a(-ki LI ikbI (79

4 Z tn (b/a) -J79

The constant C, in the integral equation for the current,

5dz'1(z9)K (z - z) = 4vi [C sin k z.a a 0 a2

(7. 10) (7. 10)

is determined from the boundary condition I (h) =0. It follows from (4.46),. ~.
and (.)Ut

C.kh ikh -

e 2 W ( h W '( h e W + ( ) W + 'Z h (7 .1 1) (7 .1 1)

4n this forrnuia, insofar as -L+ (g) is concerned, only the ratio

L. 4 (k/Tjk fxp ikc (7.12) (7.12)

] ienters. Eaq. (7. 12) defines the real ntimbers Fand h. The quantity h is cis

to be interpreted as the apparent change in line length due to the capacitive end ye end

correction. In the language of transmission line theory, h cis equal to theth
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apparent terminal capacitance divided by the capacitance per unit length of the e

infinite line. The substitution .of (7.. 12) into -(7, 11) f3.v &a

C I [I +( i )A I[I(1 - 3 ic

(7.8) Ca - hi [I+(' - 2 --- i [1.(1- - (7.13) .13)

where

a 1 k IIn (b/a) (7.14) 4)

and

(7.9) and A = Fexp [2ik(h +h)1]7

In terms of C, the input admittance it (

Ya = 2ir' [S0 a (h) +Ca Ua (h)]., (7.16) 16)

(7.10) ! where Sa and U a are analogous to (4..11 and (4. 10) respectively:

Sa(Z) = dr [R(] • dz sin kz exp(-iCZ) (7.1-7) 1'7)

C 0

and Z
(.1 Ua(Z) = 'd 7 [ (r)l dzcoskzexJ(-- i z).

0 C° -Z (7. 18) 18)

(7.12) r It may be noted that (7..16). is correct only to (kh)-l. The reason is that

a term of the order (kh)-2 must be added to correct for the fact that A(z)
c is does not vanish for I z• > h. When k Z >> 1, the function UHa of (7.1I)

he e may be evaluated by the procedure used to derive (7.879):.
the

Sa (Z) = n [An(b/a)] [1 - ic/(kZ)] (7.19) 9

S{. m9
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The radiation conductance G is just 2 Re Yap since the driving voltage has gehas

been taken to be 1. The factor 2 here comes from the fact that there are ar •

1) two wires. It follows from (7. 16) that

Ge 4C 1 m Sa(h) + Im C a Ua (h)].GOe Lma-4 + oCa

14) (7.20) (7.20)

This is fortunate since the imaginary part of Sa is simpler than the real part. al part.

15) So far only the simplifying a3sumption (7. 5) has been used. In order to der to

get explicit and useful answers, the further assumption that kb << I is to be a to be

made. In this limit, the first few terms for r, h and im Sa(h) are found ound

16) in Appendix B to be
.nr k2 b 2  f• k 2 b 2  1 n ( ]lI!

n = -0 0ba k -- b [ 1_ In (,kb) + Y - 11/6
4 nTbF- -g (bla)'

7.21) (7. 21)
17) h = b d I (a/b) K° (a/b) - Ko(9)

c =' nn lb/a)
0

(7.22z) (7.22z)

and

[m ýa(h) M- k 27b2 k 2 b 2 f In (kb) + 11/6 11/618 2 6rn,/p In (b/ -2 .)

(7.23) (7.23)

The substitution of (7. 13), (7. 19) and (7. 23) into (7. 20) gives

Goe _ _r 2 In b ImS (h)
= • L'n lbla) 1 n

-I -3.o u sin 2k(h +hc)./kh_ __ .
9) +f + [2cos 2k(h +h) +a, sin 2k(h +h/C)h

(7.24) (7.24)
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The term "near resonance" shall be used to refer to the situation where

ge has I Ca J in (7. 20) is of the order of magnitude (kb) . Near resonance, the first st

a~e term in the braces of (7. 24) is smaller than the second by a factor of the order der

-4
(kb)" , and hence may be neglected. As a function of h, the second term

shows sharp maxima in the vicinity of k (h + h ) -(n + i ). From the point t

(7.20) of view of carrying out experiments on the power radiation from a two-wire

line, the widths of these resonances are of interest. Let 6 be the total half-
al part. eopower width, i.e., the interval on the h-axis where Ge is larger than half of of

Sto the maximum value. of Ge, then

s to be k = Inm, (7.25) 25)
ound

independent of n, This is accurate to the order (kh) but not (kh) .

In (7. 22), hc is expressed in terms of an integral with the relative error or

(7.21) (kb)" . This integral remains to be evaluated numerically. When In (b/a) >> 1,

a condition almost never fulfilled in practice, an approximate evaluation is

Spossible:

I I"(7.22) oD 17. 6

11/6 0(7.2Z6) 26)

(7.23) This integral can be evaluated by shifting the contour of integration and applying ng

the Weber-Schafheitlin integral:

1 7h "T -b/ In (b/a) . (7.27) 7

This formula is due to King , whose derivation is much simpler.

(7.24)

Ii

- U
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SEquations (7. 22) and 47. 24) give the required answers on the two-wireSanserson he to-wre wire

line. However, it is desirable to calculate the so-called radiation resistance tancest I for comparison with the theory of Storer and King9 . Attention will be re-
der 

stricted to the case kb << I and kh >> 1. The radiation resistance Re is isstrcte to th cass
defined as Ge divided by the square of a "maximum" current. In the theory wory

•t r of Storer and King, a sinusoidcal current is assumed on thL two-wire line, and e, and
thus this definition is meaningful. From the present point of view, the various arious
current "maxima" are of slightly different size and thus Re is not precisely isely

of defined. Let

1 :c12 + r" lr/In(b/a)Smax 0 C 425) 

(7.28) (7.28)

Up to (kh) I , this approximates the maximum currents near the driving point point
with an error of the order (kb) in general, but of the order of (kb)- near,or
resonance. With the definition

aRe = ax e (7.29) (7.29)

Reb
R is given by

e2
Re 1' n ba fl Z. -osin2k(h+h) /(kh)].-1
Ra = I- 0 In (b/a) [ I +F7 si2k(h+hc kh)

2 6 ) 2

S~h) 3 2 sinfsih
ng~(2/w) In(b/a) i~n [ah I + F +2rcos 2k(h *hc ) +(fanZk(h +h c)/(kh)]

L JJ+ rzI 3 r sin 2k(h +h)/(k h~j (7.30) j (7. 30')
27)

N

i*

!

i
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wire

Itance The leading term of this is

e-e 3 k4h sin 2k (h + h
e . 2O 2 kh

ory (7.31)

and Except for the end coz.ectin hc , this is derived by the method of Storer and

riousKing in Appendix C. Near resonance, however, the present procedure gives

sely jmore information. Here the first term in the braces of (7. 30) may be

neglected. Since - r - 2 in r and +1"-2, (7.0)

reduces near resonance to

11 sin zkh +h)+ [- sin 2k (h +hc-(7.28) Re = In (b/a) +a 2 Ikhn n -3a 2kh "j"
point (7.32) 2)

Furthermore, near resonance the quantity sin 2k (h +hc ) is of the order ofnear c •

(kb)2 so that the first bracket may be neglected. Th'i substitution of (7. 14)

and (7.31) into (7.32) gives finally

(7.29) k 2 b 2 3In (kb)+ 11/6 3sin 2k(h +h

R = (4 0-1 kb) I L n - l/ 2; ~0 - 4 ]In 1b/a) - 2 k

(7.33) 3)

Right at the point of maximum power radiation, the last term is negligible with

the result
!e

Re =-Ir- 0o In(b/a) In 1

(7.30)
-1 kf kb In n(kb) + Y- 11/61

-(4wr) r(kb) 2 T LnbjJ
I~~~~ 4 I4)I•olbg "-•" n (bla)"

(7.34) 4)
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I Note that, from (7.25), (7.34) may be written as

SRe = k6Rc (7.35)

where R is the characteristic resistance of the infinite two-wire line.c

Eq. (7. 34) has been previously reported10

It should be emphasized that all results in this section depend on the

initial assumption of a rotationally symmetrical current distribution on each each

dipole. In the language of transmission-line theory, the proximity effect of of

the two wires has been neglected. This leads to a relative error of the order order

of (a/b) in all the physical quantitips studied.

2) 8. The Dielectric- Coated Antenna

SA dipole antenna with a thin layer of dielectric material on the outside tside

has many interesting propertieR. When the antenna is relatively short, its its

h. • behavior does not differ much from the dipole without the dielectric. When hen

it is relatively long, it behaves more like a transmission line than an antenna. ntenna
In this section, this dielectric-coated antenna is to be studied only from the

point of view of illuminating certain essential points of the procedure used in sed in,

this paper. Althoagh this problem is an extremely interesting one, no

quantitative calculations will be made sir :e no systematic experimental data data

seem to be available for this type of antenna.

The present procedure depends on the solution of a Wiener-Hopg integral ntegr

S 4) equation. Therefore, it is essential that the geometry of the problem be e
translationally invariant in the direction of the antenna after the removal of al of

/the perfectly conducting dipole antenna. Accordingly, in studying the dielectric- ielecl

I coated antenna, the dielectric layer is as-sumed to extend to infinity in the theIi
Oi
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I + z directions. Whon the dielactric tube is sufficiently small in cross

section to support no "mode,'. these extensions may be expected to make no

(5significant difference. The geometry of the 4ssumed model is shown in Fig. 5. 5.

SITo avoid unnecessary complications, the dieltictric material is assumed to be

Snonmagnetic A a dielectric constant c =o r >

SThe problem of setting up an integral equation analagous to (1. 2) is not t

each entirely straightforward. It follows from the time-independent Maxwell's

of equations that for this geomttry a current distribution

order
J = z6 (r - a) exp (-iz) (8.1)

leads to the following electric field at r a:

Ez (a,z) = alicE 0) 1 G () exp (-iz),
tside (8.2)

its
where

hen I[ 1

(tenna. I(k2- Z n [(k2- 2 b/2]+ -vi/ f r 1 (k' 2  2 ) In (b/a).

the (8.3)

sed it; This is approximately valid, in the same sense as (3. 1), when

k' b << 1, (8.4)
I data

where I

k' 4E r k .(8.5)

integral2k (85
alof So far LJ branch cuts are concerned, G ( h) las the same structure as R( ).

On the real axis, when T > k, (8.3) gives
tal of

ielectric- k G(r)=- -k 2) 1kn[(2-k2)I b/] "r-

the (8.6)

L!

IU
U_
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It follows that on the real axis when C > k, G(t) is real with one zero between ! et

k and k' . Call this zero = kd . A inore accurate calculation indicates that as

this zero is actually located slightly above the real axis. Thus, within the e

present approximation, all integrations along the real axis in the C-plane ne

s'hould be carried out with the contour C shown in-Fi,, 6.

Formally, this zero of G(C) at C= kd leads to

lim Y dC exp(irz) [G(C)]"' O.z' -.. c Cl (8. 7) (

Howe'er, for the procedure of Part I to work, the inverse Fourier transfurm

LE of R must approach zero sufficiently rapidly as z - co. In order to get the ti

kernel R , it is thus necessary to remove, from G(C) the zero at C = kd k

The simplest way to remove this zero is to define

R d(C) = z (C-kd G(C). (8.8) (8

With this definition, it follows from (8. 2) that in the present case the integral eg

iiequation for the current is

h

Ad(z) = (4•r)1  ji - dz' Id (zo) Kd (z - z)

-h

(8.9)

where Kd is the inverse Fourier transform of Kd I and Ad satisfies
IId2

(---" + kd 2)Ad(z) = iw•Ioo(z)

(8.10) (

for fzl < h. By symmety and for z l<h, Ad(z) is given by,

ID

-

U - Um
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etween -id_-
A(z) (Cdcoskd z +

les that A~) Io d ( i z)
ah (8. 11)

where

rne d = ( f o )- 1 kd (8.12)

Eqs. (8.9) and (8. 11) are analogous to (1. Z) and (1.4) respectively.

But it should be emphasized that Ad is not the vector potential for this

problem. F'om thi-s point of view, the use of the vector potential in Part I
(8.7) may be considered to be coincidental.

orm As before, the constant Cd in (8. 11) is to be determined from the

the boundary condition

kid I d (h) = 0. (8.13)

Thus, the present problem is formulated in terms of an integral equation entirely

(8.8) analogous to that of the dipole antenna without dielectric coating, the only differ-

egral ence being in the kernel. In principle, the procedure of Part I may be applied

here, but the details are somewhat more complicated. Without going into the

details, however, several qualitative statements may be made about this

azitenna by considering the kernel. First, unless b/a is very large, which

M. 9) !is not feasible practically, kd is quite close to k. Thus, the thin dielectric

coating makes only a slight modification on the behavior of the dipole antenna

unless the antenna is at least several wavelengths long. On the other hand,

when z is large, the behavior of Kd(z) is determined almost entirely by that

of Kd(•) in the vicinity of the singulariti.s at + k. In this vicinity,J Rd (r) is qualitatively very similar to K %) of the last section. Accord-d onnof te laast sion Accord-
Singly, a long dielectric-coated antenna behaves like a transmission V'ne.

--- -- '5 
-t
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In particular, lim h'*o Cd in (8. 11) does not exist. That is, the end of the the

k antenna has a profound effect on the current distribution near the driving point point

no matter how long the antenna is. This is typical of a transmission line.

This is also in agreement with the experimental observation that any abrupt pt

"bend in the antenna causes significant radiation. Moreover, the present point point

of view makes it possible to make a semi-quantitative statement: a bend

causes appreciable radiation unless the radius of curvature of the bend is much a much

larger than X (It /ik -

U- In order to make a quantitative comparison with the approach making

use of a surface impedance [K, i. 28], it remains to define the equivalent 't

radius and the equivalent surface reactance. This is done by writing the

G(N) of (8.3) in the form

G(C) = (k 2  C 2) n [(k 2
-' 21l b/Z] - nr n(b/a)+y- /r

r-i (k, 2  ) In (b/a).

(18. 14) 8. 14)

The second term of (8. 14) gives immediately the surface impedance per unit unit

length
z"i =-iwL ,(8. 15) 18.15)I •

where the inductance per unit length L is 1)85

( nr(8. 16) 8.16)

On the other hand, the tirst term on the right hand of (8. 14) gives the

equivalent radius ad in the form

ad b (a/b) r (8. 17) 8.17)

- . U
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the A dipole antenna of radius a ,:ith a dielectric coating of relative dielectric

moint constant ir and thickness b - a is equivalent to a dipole antenna of radius

ad and Iurface impedance per unit length -iwL.

A-'nowledgment
ioint

I am greatly indebted to Professor lonoldW. P. King for introducing

me to this subject and for his patient guidance and nur-e.-ous discussions.much

throughouL mzany years.
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Appendix A

This appendix is devoted to the detailed derivation of (4. 13- 15). It it

follows from (4. 1) that S(Z) has the integral representation

" (lz) =- [ de [Z(aI In 2)- In + 1)

y 0

-[Z(11 0  In2)+Z2wi- In 9(9~ +1)]-

1 +C)I exp[2ikZ (I + ] - g- exp(2ikZ) +[g(1 + g)]

(A. 1) (A. 1)

Let ' be a large number, then

S d9 {12(ao 0 )-InZ) In (V'+1)]

[2(a In - ) +21i Ing +I I

I in +1 +Fi[ n ?- In 2-n ] (A, ) (A,2)

and

in -d n 2) -2 In (+ 01

0 .

fit • +n i[12- In- 2 n T ] I n- ' +wi [00 I n 7.]"
S•(A. 3) (A. 3)
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On the other hand, approximately

It 0
ddfZ(0 - In 2)- I (9+ 1)]-- 2(1- In2) 2In(+01)"(+l

0

]- d [Z (o In 2) - 2tn 1C+ 1)]"2 In [(9+ 1)/g] (g+ 1)1

0

,.g [• d2Q.o I n2).- 2In 2] -2 ,In[+ 1)/• (fe + I)-I

0

Z 2
(A. 1) - -T-- [ -Z r (a 2InZ A.4)

Similarly,

Sd•{[2 (9o- In 2) + vi -Int(g+ 1)]"

0

2 (a- In 2)+2-ni - 2 In (I+)]! (+ )-

(A,0 25

The coznbination of (A. Z -5) yields

fd 2 {[2(o 0 -In 2) -In t, g + -0- I-n 2) + Zri - Ing(g+ 1)]-[g(I+g)F- +g)]-,

0

+vn ÷w [a G- In 2) +- -- 2(a 0- 2In 2)] - 2- (a 0 2 In 2) +2 vi]- .

(A. 6)

(A. 3) It remains to study the other two terms of (A. 1). It follows from (4. 16 -18)

that

- 1
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d [ (D o- In 2) -I ng 9+ 1)1]' [2(po- In Z) + .vi -Ing(. +](2ikZ
0

00~

d9- 1 e-9() In9+) 12 Ing l +V

00 r
dg e'90n a - (I n +y)]f [0(IZ). n+)]
S 2jya(Z) 3Z

SIn j 2  (z~ + -i- q "0 [0(z)] (A. 7) (A. 7)

Also,

00 d g 2 ( a~ In Z) - In g ( 9+ 1)] -1

-•" [ - I°nZ) + Z•wi - In (9+ 1)- (1 +91- 1 exp [2 ikZ (1 +9)]

i (2 kZ)" exp ( 7 ikZ) io2 [zr- - (A.(8)

The substitution of (A. 6-8) into (A. 1) yields (4.13).

Next, it follows from (4. 1-2) that

T(Z)-iS(Z) i 5 dC R(K) (C+kY' exp[-i (K k) Z]
C0  (A. 9) (A. 9)

mm
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or "D

-- T(Z)-iS(Z)--i d E- ex' p(2ikZ,
(2 ik 9

1

2°- In 2) - n 9(1 +9)]I [2(a -In 2) + 21ri -In (l+)]-o -In2-In ( +) 1- 0"~ Ii
(A. 10)

Eq. (4. 14) follows from (A. 7) and (A. 10).

Finally, it follows from (4. 10) thatF' r
(A.7) U(Z) -i 2d 0 °Inn?).. In (l+9)]"I [2(a -in2) +2 i - Ing(lj+g Ji

0 '
+"exp [i kZ (I + -1 + ecp (i 2kZ g (A. 11)

SI Eq. (4. 15) then follows from (A. 7), (A. 8) and (A. 11).

(A. 8)

( t
S(A. 9)

' °'S
*
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Appendix B

In this appendix (7. 21-23) are to be derived. For this purpose, it is it is

convenient to define, with (7. 12),

= In 2 ikh n (k) / t+a (-k)]
. (B.l) (B.+

Since
Jl!

a a (k) R a -k) 2 1 n (/a) (B. 2

J [ it is "%lso convonient to introduce

K Ra = 2(•) / [2 In(b/a)] (B.3) (B.3)

Then,
]• • "a 'a -

JnLa(I = l na()+-- n [Z Inlb/a)]. ,/all.

( (B. 4) (B. 4:

It follows from (B. 1) and (B. 4) that

-= -(Iri)" k d•2( - k) InK (R )

So (B. 5) (B. 5

But the integrand here is bounded in the neighborhoods of C = + k. Thus, the hus, th(

contour C0 may be replaced by the real axis:

-1 . k2)- 1

=r 2ik dt(Ck- Ina (k).

0 (B. 6) (B. 6]

I

p ~II
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Since the intergrana is real for • > k, only the part 0 < • < k contribut.es to L. I["

j Write

it is - +(B. 7)

where

[ak 22(' 1 2
""I( 12 - ) -ij 0  [a(k - ] ) -H(l) [b(k-

(B. 1) •-k dK C' -z k) 2 In -0

21n(b/a)0 (B. 8)

(B. 2) and
! I i

k). K . k2 )] - Ko[b( - k )22ik dC(C, 2 k ), In -
(B.3) A k In (b/a)

•.B. 9)

/a)]. First &2 is tc be calculated to the accuracy (kb)2 . The change of variable e

(B. 4) iS=b ( C2z - kZ) "2 (B. 10)

gives

S2 ir-1 Zikb (S 1 +S 2 ), (B. 11)

(B. 5) where

Yhus, the sI = In db/a] [Io (ar/b) K (a9/b) - Ko(9)

0 ol

(B. 12)

depends only on the ratio b/a, and

(B. 6) 1

S 2  d t 9-1 ((9(2 +kb 2 ) - In Ihb/a]'[Io0(a/b)Ko0(a/b)-K0(g}.

I (B. 13)

* mm
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Sz may be determined approximately by expanding the logarithmic factor in in

powers off. If 91 = g(kb)F', then

S 2 =kb [41n(b/a)]'' Y dg' g [(C" +1) y -[ I + I (kbg'1/2)] .

--R This gives finally

S =kb [4fuIb/a)] 2-Y- In (kb)]. (B. 15) B.15)

In order to get any new results on the radiation resistance o. the two-wire o,

S" '4line, it is necessary to calculate F to the accuracy (kb)4. Therefore, the real e real

4"part of A1 should be calculated to the a.cur-cy (kb) , ;h imaginary part only t only

Ito (kb)2. For this purpose, write A1 in terms of the new variable of integration , gratc

2 1/2SA (k _ rZ} l/2 .

,r1 ik Sdf 9- (02  ')ZIn [v i [2 fn(b/a)][J0 (ag) H ()(a 9) - H (lkbg)I H k

(B. !6(1 (B. 16:

Now the logarithm may be expanded, keeping terms up to b but neglecting ng

a 2  This gives the result

A -Zk 5 d(kZ-2)

2g Zr - _ 4 g4 b 4 V-
In (Y- +I n-;4 I

2a 2 i7.3.J

7( A 'Y - + In T_ -"i "

- a.
m •17)
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The rest of the calculation is tedious but straightforward. Because of the

.in difference of accuracy required in the real and imaginary parts, it is advan-

S1 tageous to write then- separately. The real part gives (7. 21) and the

i maginary part turns out to be uimply

m.14) Im A -W- ZkbS? . (B. 18)

Eqs. (B. 11) and (B. 18) may bo combined to yield

B Im A= 2kb S /it (B. In)

o-wire which is the same as (7. Z2).

e real i In order to get (7. 23), write the Sa(Z) of (7. 17) in the form{a
t only

- - S (Z) = +Saz , (B. 20)
gration a aZ (Z)

where

Ho~lkb• ![ a) = a2 d• a() - I~ (k)hl [(k-c ;" +(k+ •)-l
S5(Z) -- dC (k)]) (k - -1(

S[o (B. AI)
0 C

t3. 16) and
ng and SZ .L" d9 - (k)

.5 (Z)=. 2 dr
2

,I, o0

To the order (kZ)- S a(Z) is real. Therefore, approximately

Im %(Z) =mSa(Z). (B.Z SI (

t€9

* U
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Similar to the case of In , the imaginary part of Sail") comes only from the frc

range 0 < < k. By series expansion, it follows from (B. 21) and (B. 23) that . 23

(IM Sa(Z) = -k [In (b/a)]r Im d9 9i (k 2 -t21
ao

r[ b "1 1 • +Ani bZ42 b4• ) W I
S~~~~in -I [-i•"IInz -- z - 4)( - G-" '= - lZ

(in 2 b• •i2 b4104)

-(In ) (v l~t T -•- l-- -j (B. Z4)

This integrand differs from that of (B. 17) only in the absence of 1/Z . Thus,

S 1(7. 23) follows.

I

.1i

* m
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from the Appendix C

• 23) that U In order to derive (7. 31) by the method used by Storer and King, the

1 I current distribution is assumed to be

l(z) = sink(h- Iz I). (C.1)

4 Tho tangential component of the vector potential at large distance is inimedi-

ately verified to be

Atan(0,6) = Constant [cos (kh cos Q) - cos kh] cos ,

(C. 2)

(B. 24) where the constant is independent of k, h, g, and 6. Integration over 0 and

Thus, leads to

Re Constant[1 + s2 kh - 3 sin 2kh
R z [kh (C. 3)

The constant here may be determined by the observation that at resonance

i. e., kh = (n+ ) ir] the present case is identical to that treated by Storer

and King. Except for h ,this gives (7.31)

c

III
I[
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